PENERAPAN METODE HYBRID SSA-ARIMA PADA PERAMALAN INDEKS HARGA KEBUTUHAN PERTANIAN YANG DIBAYAR PETANI DI PROVINSI SULAWESI SELATAN

indonesia

  • Muhammad Fahmuddin S Department of Statistics, Universitas Negeri Makassar
  • Ruliana Department of Statistics, Universitas Negeri Makassar
  • Muh. Imam Shadiq universitas Negeri Makassar
Keywords: HYBRID SSA-ARIMA, PERAMALAN, INDEKS HARGA YANG DIBAYAR PETANI

Abstract

This study aims to determine the results and accuracy of forecasting the farmer's price index (IHDP) in South Sulawesi Province using Hybrid SSA-ARIMA. Hybrid SSA-ARIMA is a combination of two good time series methods to improve forecasting accuracy, especially for IHDP data that contains trend and seasonal elements. The data used is the South Sulawesi IHDP data from January 2019 to June 2024 which is sourced from the official website of the Central Statistics Agency. The results of the IHDP forecast in South Sulawesi for the next 12 months from July 2023 to June 2024 tend to increase with the largest increase in September 2024 of 1.184 with a forecast accuracy based on the Mean Absolute Percentage Error (MAPE) of 1.59%. This shows that Hybrid SSA-ARIMA has very good forecasting capabilities

References

Amalia Idrus, R. (2022). Penerapan Metode Singular Spectrum Analysis dalam Peramalan Jumlah Produksi Beras di Kabupaten Gowa. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(2), 49–58. https://doi.org/10.35580/variansiunm40.

Andhika, G. B., sumarjaya, I. W., & srinadi, I. G. A. M. (2020). Peramalan Nilai Tukar Petani menggunakan Metode Singular Spectrum Analysis. E-Jurnal Matematika, 9(3), 171. https://doi.org/10.24843/mtk.2020.v09.i03.p295.

Arumningsih, L. D., & Darsyah, M. Y. (2018). Peramalan Indeks Harga Konsumen Kota Malang Tahun 2014–2016 dengan menggunakan Metode Moving Average dan Exponential Smoothing Holt-Winter. Prosiding Seminar Nasional …, 1(January 2018), 310–315.

Arumsari, M., Wahyuningsih, S., & Siringoringo, M. (2021). Inflation Forecasting for East Kalimantan Province Using Hybrid Singular Spectrum Analysis- Autoregressive Integrated Moving Average Model. Jurnal Matematika, Statistika dan Komputasi, 18(1), 78–92. https://doi.org/10.20956/j.v18i1. 14284

Asmara, R., & Hanani, N. (2016). Tingkat Kesejahteraan Petani Kabupaten Jombang: Pendekatan Nilai Tukar Petani. Seminar Nasional Pembangunan Pertanian 2016, 78–83.

Asrof, A. (2017). Peramalan Produksi Cabai Merah di Jawa Barat Menggunakan Metode Singular Spectrum Analysis (SSA). STATISTIKA: Journal of Theoretical Statistics and Its Applications, 17(2), 77–87. https://doi.org/10.29313/jstat.v17i2.2839.

Aswi, & Sukarna. (2006). Analisis deret waktu: Teori dan aplikasinya. Andira Publisher.

Ayu, R., Gernowo, R., Fisika, D., Sains, F., Diponegoro, U., & E-, S. (2019). Metode Autoregressive Integrated Movingaverage (Arima) Dan Metode Adaptive Neuro Fuzzy Inference System (Anfis) Dalam Analisis Curah Hujan. Berkala Fisika, 22(1), 41–48.

Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day.

Darmawan, G., Rosadi, D., & Ruchjana, B. N. (2022). Hybrid Model of Singular Spectrum Analysis and ARIMA for Seasonal Time Series Data. CAUCHY: Jurnal Matematika Murni dan Aplikasi, 7(2), 302–315. https://doi.org/10.18860/ca.v7i2.14136.

Darmawan, G. (2016). Identifikasi Pola Data Curah Hujan pada Proses Grouping dalam Metode Singular Spectrum Analysis. Seminar Nasional Pendidikan Matematika, 1–7.

Darmawan, G., Hendrawati, T., & Arisanti, R. (2015). Model Auto Singular Spectrum Untuk Meramalkan. Prosiding Seminar UNY 2015, 1, 457–462.

Endrayani, N. K. E., & Dewi, M. H. U. (2016). Analisis Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan Kabupaten/Kota Di Provinsi Bali. E-Jurnal Ekonomi dan Bisnis Universitas Undayana, 5(1), 63–88.

Fajar, M. (2019). Perbandingan Kinerja Peramalan Pertumbuhan Ekonomi Indonesia dengan ARIMA , SSA dan Hybrid ARIMA-SSA. ResearchGate, 1–7. https://doi.org/10.13140/RG.2.2.28620.26244

Fitri, F., Gamayanti, N. F., & Gunawan, G. (2017). Metode SSA Pada Data Produksi Perikanan Tangkap di Provinsi Jawa Barat. Jurnal Ilmiah Matematika dan Pendidikan Matematika, 9(2), 95. https://doi.org/10.20884/1.jmp.2017.9.2.2870.

Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC.

Hartati, H. (2017). Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi. Jurnal Matematika Sains dan Teknologi, 18(1), 1–10. https://doi.org/10.33830/jmst.v18i1.163.2017

Irwan, Adnan Sauddin, & Anita Kaimuddin. (2022). Proyeksi Produksi Padi Kabupaten Pinrang dengan Metode Singular Spectrum Analysis. Jurnal MSA ( Matematika dan Statistika Serta Aplikasinya ), 10(1), 100–109. https://doi.org/10.24252/msa.v10i1.29869

Martha, S., & Si, S. (2010). Peramalan Data Time Series Menggunakan Metode Box-Jenkins. Statistika.

Nirmala, A., Hanani, N., & Muhaimin, A. (2016). Analisis Faktor Faktor yang Mempengaruhi Nilai Tukar Petani Tanaman Pangan di Kabupaten Jombang. Habitat, 27(2), 66–71. https://doi.org/10.21776/ub.habitat.2016.027.2.8

Nurfadila, K., & Ilham Aksan. (2020). Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler. Journal of Mathematics: Theory and Applications, 2(1), 5–10. https://doi.org/10.31605/jomta.v2i1.749

Permata, E., Putri, S., Zukhronah, E., & Susanti, Y. (2023). Model Hibrida Singular Spectrum Analysis ( SSA ) dan Autoregressive Integrated Moving Average ( ARIMA ) untuk Peramalan Indeks Harga Konsumen. 72–81.

Qadrini, L., Asrirawan, A., Mahmudah, N., Fahmuddin, M., & Amri, I. F. (2020). Forecasting Bank Indonesia currency inflow and outflow using arima, time series regression (tsr), arimax, and nn approaches in Lampung. Jurnal Matematika, Statistika Dan Komputasi, 17(2), 166–177. https://doi.org/10.20 956/jmsk.v17i2.11803

Rachmat, M. (2013). Nilai tukar petani : konsep, pengukuran dan relevansinya sebagai indikator kesejahteraan petani Farmers’ Terms of Trade: The Concept, Estimation, and Relevance for Farmers’ Welfare Indicators. Jurnal Agro Ekonomi, 31(2), 113.

Rebeka Pardosi, A. (2024). Analisis Perencanaan Peramalan dan Safety Stock Sprite 250ML dengan Metode Time Series Di PT. XYZ. Teknik Elektro dan Informatika, 2(2), 10–21. https://doi.org/10.61132/jupiter.v2i2.84

RM, D. A. P., & Adhar, D. (2023). Penerapan Metode Autoregressive Integrated Moving Average (ARIMA) untuk Prediksi Jumlah Siswa Baru Pada MTs Swasta Tahfidzul Qur’an Nurul Azmi. Jurnal Rekayasa Sistem (JUREKSI), 1(1),82–93.https://kti.potensiutama.org/index.php/JUREKSI/article/view/312

Sumartini, Hayati, M. N., & Wahyuningsih, S. (2017). Peramalan Menggunakan Metode Fuzzy Time Series Cheng. Jurnal EKSPONENSIAL, 8, 51–56.

Thamrin, S. (2016). Faktor-Faktor Yang Mempengaruhi Produksi Usahatani Kopi Arabika di Kabupaten Enrekang Sulawesi Selatan. Agric, 26(1), 1. https://doi.org/10.24246/agric.2014.v26.i1.p1-6

Udhar, N. A. A. (2020). The Effect Of The Dynamic Of Economic Sectors to Income Inequality In South Sulawesi.

Yundari, A. W. H. (2019). Prediksi Outflow Uang Kartal di Kalimantan Barat dengan Metode Singular Spectrum Analysis (Ssa). Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya, 8(3), 545–554. https://doi.org/10.26418/bbimst.v8i3.33903.

Published
2025-09-30
How to Cite
Fahmuddin S, M., Ruliana, & Muh. Imam Shadiq. (2025). PENERAPAN METODE HYBRID SSA-ARIMA PADA PERAMALAN INDEKS HARGA KEBUTUHAN PERTANIAN YANG DIBAYAR PETANI DI PROVINSI SULAWESI SELATAN: indonesia. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 7(2), 179-191. https://doi.org/10.35580/variansiunm317
Section
Articles