Perbandingan Model Value-at-Risk (VaR) Hybrid GARCH-EVT dan Model Standar dalam Pengukuran Risiko Ekstrem pada Portofolio Saham Sektoral di Indonesia
Abstract
This study aims to construct an optimal portfolio and compare the accuracy of various Value-at-Risk (VaR) models in measuring the risk of stock portfolios in the Indonesia Stock Exchange (IDX). The optimal portfolio is formed using the Minimum Variance Portfolio (MVP) method based on 11 sector-representative stocks for the period 2019–2025. The risk performance of this portfolio is then evaluated using six VaR models: Variance–Covariance (VC), Historical Simulation (HS), Monte Carlo (MC), GARCH (1,1), Extreme Value Theory (EVT-GPD), and the hybrid GARCH–EVT model. Model accuracy is assessed through backtesting using the Kupiec Proportion of Failures (POF) test and the Christoffersen Conditional Coverage (CC) test at the 95% and 99% confidence levels. The optimization results indicate that the MVP portfolio is dominated by defensive sectors such as consumer non-cyclicals (ICBP.JK) and large-cap banking (BBCA.JK). Backtesting results show that although all models perform adequately at the 95% level, standard models (VC, MC, GARCH) fail to capture extreme risk at the 99% level. In contrast, the GARCH–EVT model satisfies the backtesting criteria and emerges as the most accurate and superior model for predicting extreme losses.
Penelitian ini bertujuan untuk membangun portofolio optimal dan membandingkan akurasi berbagai model Value-at-Risk (VaR) dalam mengukur risiko portofolio saham di Bursa Efek Indonesia (BEI). Portofolio optimal dibentuk menggunakan metode Minimum Variance Portfolio (MVP) dari 11 saham perwakilan sektor periode 2019-2025. Kinerja risiko portofolio ini kemudian diukur menggunakan enam model VaR: Variance-Covariance (VC), Historical Simulation (HS), Monte Carlo (MC), GARCH (1,1), Extreme Value Theory (EVT-GPD), dan model hybrid GARCH-EVT. Akurasi model diuji menggunakan backtesting Uji Kupiec (POF) dan Uji Christoffersen (CC) pada tingkat kepercayaan 95% dan 99%. Hasil optimisasi menunjukkan portofolio MVP didominasi oleh sektor defensif seperti consumer non-cyclicals (ICBP.JK) dan perbankan big-cap (BBCA.JK). Hasil backtesting menunjukkan bahwa meskipun semua model akurat pada tingkat 95%, model standar (VC, MC, GARCH) gagal mengukur risiko ekstrem pada tingkat 99%. Sebaliknya, model GARCH-EVT terbukti memenuhi uji dan menjadi model yang paling akurat dan superior untuk memprediksi kerugian ekstrem.
References
Acerbi, C., & Tasche, D. (2002). On the Coherence of Expected Shortfall. Journal of Banking & Finance, 26(7), 1487–1503. https://doi.org/10.1016/S0378-4266(02)00283-2
Ariwibowo, A. (2020). Analisis Value at Risk menggunakan pendekatan Threshold GARCH (TGARCH) dan Generalized Pareto Distribution (GPD). https://repository.uinjkt.ac.id/dspace/bitstream/123456789/51563/1/ALDILAH ARIWIBOWO-FST.pdf
Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862. https://doi.org/10.2307/2527339
Dowd, K. (2006). Measuring market risk (2nd ed.). John Wiley & Sons.
Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events: for insurance and finance. Springer-Verlag.
Glasserman, P. (2004). Monte Carlo methods in financial engineering (Vol. 53). Springer-Verlag. https://doi.org/10.1007/978-0-387-21617-1
Jorion, P. (2007). Value at risk: the new benchmark for managing financial risk (3rd ed.). McGraw-Hill.
J.P. Morgan. (1996). RiskMetrics---Technical Document. https://www.msci.com/documents/10199/5915b101-1905-4392-85a3-71f3a9e8d3f0
Kaibuchi, H., Kawasaki, Y., & Stupfler, G. (2021). GARCH-UGH: A bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series. ArXiv Preprint ArXiv:2104.09879. https://arxiv.org/abs/2104.09879
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 3(2), 73–84.
Linsmeier, T. J., & Pearson, N. D. (1996). Risk measurement: An introduction to value at risk. University of Illinois at Urbana-Champaign.
Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Maulana, D., Dharmawan, K., & Srinadi, I. G. A. M. (2022). Estimasi CVaR pada portofolio saham menggunakan metode GJR-EVT dengan pendekatan D-Vine Copula. E-Jurnal Matematika, 11(2), 127–139. https://doi.org/10.24843/MTK.2022.v11.i02.p372
McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7(3–4), 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8
Peiris, R., Wang, C., Gerlach, R., & Tran, M.-N. (2024). Semi-parametric financial risk forecasting incorporating multiple realized measures. ArXiv Preprint ArXiv:2402.09985. https://arxiv.org/abs/2402.09985
Yang, J. (2025). Institutional Differences, Crisis Shocks, and Volatility Structure: A By-Window EGARCH/TGARCH Analysis of ASEAN Stock Markets. ArXiv Preprint ArXiv:2510.16010. https://arxiv.org/abs/2510.16010








